metabelian, supersoluble, monomial
Aliases: C62.51C23, D6:C4:9S3, D6:2(C4xS3), Dic32:1C2, C32:4(C4xD4), C6.48(S3xD4), C3:D12:2C4, C3:Dic3:11D4, Dic3:1(C4xS3), Dic3:C4:13S3, (C2xC12).198D6, C3:2(Dic3:5D4), C6.7(D4:2S3), C2.1(Dic3:D6), (C2xDic3).64D6, (C22xS3).33D6, C3:2(Dic3:4D4), C2.4(D12:S3), C6.D12:12C2, (C6xC12).229C22, C6.30(Q8:3S3), (C6xDic3).59C22, C2.17(C4xS32), (C2xC4).94S32, C6.16(S3xC2xC4), (S3xC6):3(C2xC4), (C2xS3xDic3):9C2, (C3xD6:C4):22C2, C22.31(C2xS32), (C3xC6).92(C2xD4), (C3xDic3):2(C2xC4), (S3xC2xC6).14C22, (C3xDic3:C4):12C2, (C2xC3:D12).7C2, (C3xC6).30(C4oD4), (C3xC6).15(C22xC4), (C2xC6).70(C22xS3), (C22xC3:S3).68C22, (C2xC3:Dic3).128C22, (C2xC4xC3:S3):12C2, (C2xC3:S3):7(C2xC4), SmallGroup(288,529)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.51C23
G = < a,b,c,d,e | a6=b6=c2=1, d2=e2=b3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=a3c, ede-1=a3d >
Subgroups: 850 in 215 conjugacy classes, 60 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, Dic3, C12, D6, D6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3:S3, C3xC6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C4xD4, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C2xC3:S3, C2xC3:S3, C62, C4xDic3, Dic3:C4, D6:C4, D6:C4, C3xC22:C4, C3xC4:C4, S3xC2xC4, C2xD12, C22xDic3, C2xC3:D4, S3xDic3, C3:D12, C6xDic3, C4xC3:S3, C2xC3:Dic3, C6xC12, S3xC2xC6, C22xC3:S3, Dic3:4D4, Dic3:5D4, Dic32, C6.D12, C3xDic3:C4, C3xD6:C4, C2xS3xDic3, C2xC3:D12, C2xC4xC3:S3, C62.51C23
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22xC4, C2xD4, C4oD4, C4xS3, C22xS3, C4xD4, S32, S3xC2xC4, S3xD4, D4:2S3, Q8:3S3, C2xS32, Dic3:4D4, Dic3:5D4, D12:S3, C4xS32, Dic3:D6, C62.51C23
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 43 9 45 11 47)(8 44 10 46 12 48)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)(13 45)(14 46)(15 47)(16 48)(17 43)(18 44)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 39)(26 40)(27 41)(28 42)(29 37)(30 38)
(1 41 16 36)(2 40 17 35)(3 39 18 34)(4 38 13 33)(5 37 14 32)(6 42 15 31)(7 30 45 21)(8 29 46 20)(9 28 47 19)(10 27 48 24)(11 26 43 23)(12 25 44 22)
(1 27 16 24)(2 28 17 19)(3 29 18 20)(4 30 13 21)(5 25 14 22)(6 26 15 23)(7 41 45 36)(8 42 46 31)(9 37 47 32)(10 38 48 33)(11 39 43 34)(12 40 44 35)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,39)(26,40)(27,41)(28,42)(29,37)(30,38), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,30,45,21)(8,29,46,20)(9,28,47,19)(10,27,48,24)(11,26,43,23)(12,25,44,22), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,41,45,36)(8,42,46,31)(9,37,47,32)(10,38,48,33)(11,39,43,34)(12,40,44,35)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,10)(2,11)(3,12)(4,7)(5,8)(6,9)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,39)(26,40)(27,41)(28,42)(29,37)(30,38), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,30,45,21)(8,29,46,20)(9,28,47,19)(10,27,48,24)(11,26,43,23)(12,25,44,22), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,41,45,36)(8,42,46,31)(9,37,47,32)(10,38,48,33)(11,39,43,34)(12,40,44,35) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,43,9,45,11,47),(8,44,10,46,12,48),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39)], [(1,10),(2,11),(3,12),(4,7),(5,8),(6,9),(13,45),(14,46),(15,47),(16,48),(17,43),(18,44),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,39),(26,40),(27,41),(28,42),(29,37),(30,38)], [(1,41,16,36),(2,40,17,35),(3,39,18,34),(4,38,13,33),(5,37,14,32),(6,42,15,31),(7,30,45,21),(8,29,46,20),(9,28,47,19),(10,27,48,24),(11,26,43,23),(12,25,44,22)], [(1,27,16,24),(2,28,17,19),(3,29,18,20),(4,30,13,21),(5,25,14,22),(6,26,15,23),(7,41,45,36),(8,42,46,31),(9,37,47,32),(10,38,48,33),(11,39,43,34),(12,40,44,35)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | ··· | 4H | 4I | 4J | 4K | 4L | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H | 12I | ··· | 12N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 6 | 6 | 18 | 18 | 2 | 2 | 4 | 2 | 2 | 6 | ··· | 6 | 9 | 9 | 9 | 9 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 4 | ··· | 4 | 12 | ··· | 12 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | S3 | D4 | D6 | D6 | D6 | C4oD4 | C4xS3 | C4xS3 | S32 | S3xD4 | D4:2S3 | Q8:3S3 | C2xS32 | D12:S3 | C4xS32 | Dic3:D6 |
kernel | C62.51C23 | Dic32 | C6.D12 | C3xDic3:C4 | C3xD6:C4 | C2xS3xDic3 | C2xC3:D12 | C2xC4xC3:S3 | C3:D12 | Dic3:C4 | D6:C4 | C3:Dic3 | C2xDic3 | C2xC12 | C22xS3 | C3xC6 | Dic3 | D6 | C2xC4 | C6 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 2 | 3 | 2 | 1 | 2 | 4 | 4 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of C62.51C23 ►in GL8(F13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12] >;
C62.51C23 in GAP, Magma, Sage, TeX
C_6^2._{51}C_2^3
% in TeX
G:=Group("C6^2.51C2^3");
// GroupNames label
G:=SmallGroup(288,529);
// by ID
G=gap.SmallGroup(288,529);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,135,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=e^2=b^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^3*c,e*d*e^-1=a^3*d>;
// generators/relations